MATH 54 - MIDTERM 2 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Note: Midterm 2 is on Friday, July 13th in 4 Evans from 12:05 pm to 2 pm. It covers sections 1.7-1.9, 4.1-4.7,5.4 of the Linear Algebra book and sections 4.2-4.6, 6.1-6.2 of the Differential Equations - book. There will be about 10-11 questions, roughly 6-7 LA questions and 3-4 DE questions!

Note: 1.3.4 means 'Problem 4 in section 1.3'

Chapter 4: Vector Spaces

- Show that a set is or is not a vector space:
- By either showing that the 0 -vector is not in it, or by showing it is not closed under addition or scalar multiplication (4.1.1, 4.1.3, 4.1.7, 4.1.15)
- By showing it's a subspace of a given vector space (4.1.5, 4.1.8, 4.1.20, 4.1.21, 4.1.22)
- By expressing it as the span of some vectors (4.1.9, 4.1.17)
- By writing it as $\operatorname{Nul}(A)$ for some matrix A
- Given a matrix A, find $\operatorname{Nul}(A)$ (4.2.5)
- Determine whether a set of vectors is linearly dependent or independent (1.7.1, 1.7.5, 1.7.7, 1.7.11, 1.7.15, 1.7.17)
- Show that a set of vectors, polynomials, matrices, functions is linearly dependent or independent (4.3.33)
- Show that a set is (or is not) a basis for a given vector space (4.3.1, 4.3.5, 4.3.6)
- Given a set of vectors, extract a basis for the span of those vectors (just form the matrix of those vectors, row-reduce, and find $\operatorname{Col}(A), 4.3 .15,4.3 .11)$
- Find a basis for an abstract vector space (for example, find a basis for the set of 2×2 symmetric matrices, see practice midterm)
- Remember the trick of thinking of polynomials (or general vectors) as list of numbers! For example $1-t+2 t^{2}$ is the same as $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right](4.3 .34,4.3 .27)$
- Find the dimension of a vector space (4.5.1, 4.5.3, 4.5.9, 4.5.10)
- Remember the trick that a set of 3 linearly independent vectors in a 3 -dimensional vector space is a basis, etc.
- Given $[\mathbf{x}]_{\mathcal{B}}$, find \mathbf{x}, and vice-versa (4.4.1, 4.4.3, 4.4.5, 4.4.7, 4.4.11)
- Find the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^{n} (4.4.9)
- Given a matrix A, find a basis for $\operatorname{Nul}(A), \operatorname{Col}(A), \operatorname{Row}(A)$, and also find $\operatorname{Rank}(A)$ (4.6.1, 4.6.3, 4.6.4)
- Use the rank-nullity theorem to find $\operatorname{Rank}(A)$ etc. (4.6.7, 4.6.9, 4.6.11, 4.6.13, 4.6.15)
- Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} (4.7.7, 4.7.9. always remember to evaluate the old vectors in \mathcal{B} with respect to the new and cool basis \mathcal{C})
- Use the change-of-coordinates matrix to find $[\mathbf{x}]_{\mathcal{C}}$ given $[\mathbf{x}]_{\mathcal{B}}$ and vice-versa (see examples covered in lecture)

Linear Transformations

- Show that T is a linear transformation or not (1.8.32, 1.8.33, 5.4.5(b), 5.4.9(b), 5.4.10(a), or, for example, show $T(y)=y^{\prime \prime}+2 y^{\prime}-y$ is linear)
- Find the matrix of a given linear transformation T from \mathbb{R}^{n} to $\mathbb{R}^{m}(1.9 .1,1.9 .3$, 1.9.5, 1.9.8, 1.9.10, 1.9.11, 1.9.17)
- Find the matrix of a linear transformation from an abstract vector space V to an abstract vector space W. Know how to do this with polynomials, functions, and matrices! (5.4.5(c), 5.4.7, 5.4.9(c))
- Remember the definitions of one-to-one and onto. Show that a linear transformation is one-to-one or not (Is the L.T. in 1.8.9 one-to-one?)
- Given a linear transformation T, find $\operatorname{Ker}(T)(1.8 .9,4.2 .32$, or: what is the kernel of $T(y)=y^{\prime \prime}-5 y^{\prime}+6 y$)

Chapter 4: Linear Second-order equations

- Find the general solution to a second-order differential equation, possibly including complex roots, repeated roots, or initial conditions (4.2.1, 4.2.18, 4.3.1, 4.3.3, 4.3.24, but really, the other problems are good too!)
- Determine if two functions are linearly independent or linearly dependent (4.2.27, 4.2.28)
- Solve equations using undetermined coefficients (4.4.9, 4.4.11, 4.4.13, 4.4.15, 4.5.28, 4.2.30, I will not ask you for anything too complicated where one of the roots of the auxiliary equation coincides with the right-hand-side, just remember the basic stuff)
- Solve equations using variation of parameters (4.6.1, 4.6.3, 4.6.12, no need to remember any fancy integrals!)

Chapter 6: THEORY OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

- Find the largest interval on which a given differential equation has a unique solution (6.1.1, 6.1.3, 6.1.5)
- Use the Wronskian to show that a set of functions is linearly independent (6.1.7, 6.1.11, 6.1.13, 6.1.25)
- Find the general solution of a higher-order differential equation, possibly including initial conditions (6.2.1, 6.2.5, 6.2.9, 6.2.15, 6.2.17, 6.2.19, remember how to use the rational roots theorem!)

True/False Extravaganza

Check out the following set of T/F questions (solutions are in the HW hints, but beware, there might be mistakes, e-mail me whenever something seems to be wrong): 1.8.21, 1.9.23, 4.1.24, 4.2.25, 4.2.26, 4.3.21, 4.3.22, 4.4.15, 4.4.16, 4.5.19, 4.5.20, 4.6.17, 4.6.18, 4.7.11, 4.7.12.

Note: There will be NO T/F questions about differential equations! However, there will be $5 \mathrm{~T} / \mathrm{F}$ questions without justifications, and $4 \mathrm{~T} / \mathrm{F}$ questions with justifications. They will all be linear algebra questions!

Concepts

Here are a couple of concepts we learned so far. You don't have to memorize the definitions, just have a rough idea of what those things are

- Vector space, Subspace
- Linear (in)dependence, Span, Basis
- Dimension
- Nullspace, Row Space, Column Space, Rank
- Rank-Nullity Theorem
- Coordinates with respect to \mathcal{B}
- Change-of-coordinates matrix from \mathcal{B} to \mathcal{C}, from \mathcal{B} to the standard basis of \mathbb{R}^{n}
- Linear Transformation, the matrix of a linear transformation
- $\operatorname{Ker}(T), \operatorname{Ran}(T)$, one-to-one, onto
- The 3 miracles of linear algebra:
- Every vector space is like \mathbb{R}^{n}
- Every linear transformation is a matrix, and every matrix is a linear transformation
- If $\operatorname{dim}(V)=\operatorname{dim}(W)=n$ and T is one-to-one, then T is onto, and viceversa
- Linear independence of functions, Wronskian matrix, Wronskian determinant
- Fundamental solution set
- Auxiliary polynomial

